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Abstract

Neuroimaging studies have provided a major contribution to our understanding of the

mechanisms of the placebo effect in neurological and psychiatric disorders. Expectation of

symptom improvement has long been believed to play a critical role in the placebo effect, and is

associated with increased endogenous striatal dopamine release in Parkinson_s disease and

increased endogenous opioid transmission in placebo analgesia. Evidence from positron

emission tomography and functional magnetic resonance imaging studies suggests that

expectations of symptom improvement are driven by frontal cortical areas, particularly the

dorsolateral prefrontal, orbitofrontal, and anterior cingulate cortices. The ventral striatum is

involved in the expectation of rewarding stimuli and, together with the prefrontal cortex, has also

been shown to play an important role in the placebo-induced expectation of therapeutic benefit.

Understanding the mechanisms of the placebo effect has important implications for treatment of

several medical conditions, including depression, pain, and Parkinson_s disease.
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Introduction

Neuroimaging has made invaluable contributions to our

understanding of neurological disorders, particularly in

the field of Parkinson_s disease (PD). Through its ability to

specifically tag the dopaminergic system, positron emission

tomography (PET) has been used extensively to track the

progression of the disease, detect presymptomatic individ-

uals, and to increase our general understanding of the

function of the monoaminergic systems underlying volun-

tary movement, cognition, and mood. The ability to

quantitatively image dopamine function in the human brain

has driven scientific research forward into areas that had

been previously untapped. One such example is the placebo

effect, which remained a largely clinical phenomenon until

the neurochemical mechanisms could begin to be elucidated

through the use of PET and functional magnetic resonance

imaging (fMRI). Such techniques have significantly ad-

vanced our understanding of the placebo effect in the fields

of PD, pain, and depression, and have provided important

insights into the brain processes involved in the way we

integrate environmental contexts, cognition, and affective

self-regulation. The present article reviews the contributions

of neuroimaging to our understanding the placebo effect in

neurological and psychiatric conditions, with emphasis on

PD and the role of expectation and the dopamine system.

Dopamine and the Neuropathology
of PD

Dopamine neurons projecting to the forebrain are classified

into three different systems according to their terminal

projections [1Y3]: from the ventral tegmentum to the frontal

cortex (mesocortical system); to limbic areas including the

amygdala, nucleus accumbens, and hypothalamus, among

others (mesolimbic system); and to the striatum, comprising

the putamen and caudate nucleus (nigrostriatal system).

Dopamine released in these different terminal regions mayCorrespondence to: A. Jon Stoessl; e-mail: jstoessl@interchange.ubc.ca



be associated with functions as diverse as working memory,

learning, motivation, addictive behaviors, reward processing,

and voluntary movement. Disrupted dopamine function can

result in parkinsonism, loss of incentive salience, addictive

behavior, and psychosis. In PD, the primary deficit involves

the selective degeneration of nigrostriatal dopamine-produc-

ing cells (although at the later stages of disease, other

dopamine projections, as well as other neurotransmitter

systems, may also be affected), and is therefore mainly

characterized by alterations in the control and execution of

voluntary salient movement. Given the critical role of

dopamine in modulating the corticostriatothalamocortical

circuits of the basal ganglia [4, 5], the dopamine depletion

that occurs in PD results in aberrant processing in these

circuits, the overall impact of which is a reduced thalamic

drive to the motor cortex, which results in difficulties

initiating movement (akinesia), bradykinesia (slowness of

movement), rigidity, tremor at rest, and postural instability.

PD pharmacotherapy aims at replacing the lost dopamine by

either direct means using dopamine precursors, which are

enzymatically converted into dopamine (levodopa), or syn-

thetic agonists acting at dopamine receptors.

The Placebo Effect In PD: Clinical
Results

The placebo effect can be defined as any Bgenuine psycho-

logical or physiological effect which is attributable to re-

ceiving a substance or undergoing a procedure, but is not due

to the inherent powers of that substance or procedure^
(adapted from Stewart-Williams and Podd [6]). Any sort of

treatment can act as a placebo, but it is the response of the

patient (either positive or negative) to that treatment that

determines whether or not a placebo effect has occurred. The

magnitude of the placebo effect itself is related to the type of

placebo administered; the greater the potency of treatment,

the greater the placebo effect [7]. For example, placebo

surgery seems to be more effective than a placebo pill [8Y10]

and, as a recent study for arthroscopic knee surgery sug-

gested, may produce the same outcome as the actual surgical

procedure [11]. Placebo effects have been documented

throughout the course of history in a wide variety of medical

disorders, including depression, pain, and many others [10],

and given the lack of specificity of the different (and

frequently bizarre) remedies, it could be said that the history

of medicine is, in fact, the history of the placebo effect [12].

Substantial placebo effects occur in PD that are, for the

most part, detected in placebo-controlled trials aimed at test-

ing new pharmacological, surgical, or physical therapies. For

example, in a double-blind trial of pergolide, significant im-

provement with respect to baseline was seen in both the

pergolide-treated group (30% after 24 weeks) and the placebo

group (23% after 24 weeks) [13]. In the large clinical trial

of deprenyl and tocopherol antioxidative therapy of parkin-

sonism, 21% of patients demonstrated a blinded, investigator-

determined, Bobjective^ improvement in motor function

during placebo therapy over six months [14]. Goetz and

colleagues reported that 14% of the patients enrolled in a six-

month, randomized, placebo-controlled clinical trial of

ropinirole monotherapy achieved a 50% improvement in

motor function while on placebo treatment [15]. In this

particular study, all domains of parkinsonism were subject to

the placebo effect, but bradykinesia and rigidityVthose fea-

tures of PD which are best correlated to dopamine functionV
tended to be more susceptible than tremor, gait, or balance.

Finally, in a metareview, Shetty and colleagues [16] demon-

strated that 12 of 36 articles reported a 9Y59% improvement

in PD patient motor symptoms following placebo treatment.

The importance of including a placebo group when inves-

tigating the efficacy of surgical procedures for treating PD

has been emphasized [17] but remains a source of contro-

versy [18Y20]. In a recent study on the effect of intrastriatal

implantation of fetal porcine ventral mesencephalic tissue to

treat PD [21], the degree of motor performance improve-

ment at 18 months was substantial, but was the same in the

sham group. In one multicenter, randomized, double-blind,

sham surgery-controlled study of human fetal transplanta-

tion for Parkinson_s [22], there was no significant clinical

benefit of the transplant compared to sham surgery, although

pilot studies performed using an identical technique had

demonstrated substantial benefit [23]. Indeed, in another

study of human fetal transplantation, both subjective and ob-

jective (blinded examiner) outcomes were better predicted by

which treatment the patient thought s/he was assigned to

rather than the actual treatment assignment [24, 25].

Clinical results such as these have provided the impetus

for experiments that aim to study the placebo effect itself.

These studies face significant ethical and logistical chal-

lenges as, to study the placebo effect (as opposed to detecting

it in a standard clinical trial), deliberate deception must often

be used to maintain the expectation of improvement in the

subject. PD is an excellent model in which to study the placebo

effect due to the ability to objectively measure the motor

responses in these patients using standard clinical neurological

tests by a blinded examiner [15, 26]. For example, Mercado

and colleagues (2006) demonstrated that patients with sub-

thalamic nucleus deep-brain stimulation (STN-DBS) as treat-

ment for PD had a greater degree of improvement in their

motor performance, as measured by the Unified PD Rating

Scale, when they thought that their stimulators were turned on,

and performed even worse when they thought that their

stimulators were off, compared to the conditions in which they

were blind to stimulator function [27]. Benedetti and col-

leagues used standard clinical measures to demonstrate that

sham STN-DBS can improve bradykinesia [28Y30], and also

that saline given in the guise of apomorphine can reduce ri-

gidity [31] in patients conditioned to the effects of the active

medication. However, it is equally important to emphasize

that the clinical scales used for measuring motor function are

subjective themselves, and patients may also be less prone to

report clinical changes than the clinicians are to observe them

[24], which adds another dimension of subjectivity.
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The Placebo Effect in PD: Imaging
Results

Neuroimaging has been critical in establishing a clear phys-

iological basis for the placebo effect in PD, and placebo

studies represent an example of how imaging can enable

significant strides to be made into areas where most previous

investigation had depended on conjecture based on clinical

observation. Presynaptic extracellular dopamine release can

be indirectly estimated using [11C]-raclopride PET [32Y34],

and several studies have used this technique to measure

endogenous dopamine release in response to pharmacolog-

ical challenges [35Y40], drugs of abuse [41Y43], drug-related

cues [44], metabolic stress [45], and monetary reward [46,

47] in both healthy and disease states. Most relevant to PD,

Piccini and colleagues (2003) demonstrated endogenous

striatal dopamine in response to methamphetamine in

advanced PD patients, indicating that it is possible for these

patients to release endogenous dopamine, albeit to a lesser

degree than healthy controls [48].

Using [11C]-raclopride PET, de la Fuente-Fernandez

et al. (2001) demonstrated that a placebo could induce the

release of endogenous dopamine in the striatum of PD

patients [49]. In this study, patients underwent four PET

scans and were aware that they would be receiving an

injection of active drug (apomorphine, a dopamine receptor

agonist) for three of the scans and a placebo for another

scan, but they were not told the scan order. The investigators

found a substantial dopamine release in response to placebo

(approximately 17% decrease in [11C]-raclopride binding,

corresponding to a change of 200% or more in extracellular

dopamine concentration and comparable to the response to

amphetamine in subjects with an intact dopamine system)

(Fig. 1). Furthermore, the dopamine release in the motor

areas of the striatum (putamen and dorsal caudate) was

greater in those patients who reported clinical improvement

(i.e., who perceived a placebo effect). In a recent related

study, Strafella and colleagues (2006) also used [11C]-

raclopride PET to demonstrate striatal dopamine release in

response to sham repetitive transcranial magnetic stimula-

tion (rTMS) in PD patients. In this study, patients underwent

two PET scans, one baseline scan in which no rTMS was

used, and a placebo scan, where they were told that they had a

50/50 chance of receiving either real rTMS or sham rTMS,

but in all cases received the sham treatment. Interestingly,

those authors found that the changes in [11C]- raclopride

binding were greater in the hemisphere contralateral to the

more affected side, particularly in the putamen [50].

Although the patients who perceived clinical benefit had a

slightly higher amount of dopamine release in the dorsal

and ventral striatum, this difference failed to reach statistical

significance. Taken together, these results indicate that the

biochemical basis for the placebo response in PD is to replace

the depleted dopamine in those striatal areas that are respon-

sible for motor symptoms, leading to clinical improvement.

These results are corroborated by an electrophysiology study

performed in PD patients undergoing STN-DBS surgery, in

which it was shown that a placebo evoked a decrease in mean

neuronal firing frequency and a shift to nonbursting activity

in the STN, which was highly correlated with a reduction in

upper-limb rigidity [31]. It is likely that the change in STN

neuron firing is a downstream effect of placebo-induced

dopamine release in the caudate and putamen.

Expectation and the Placebo Effect

What remains unclear is how this biochemical placebo

response (i.e., dopamine release) is produced in the first

place. The importance of expectation in placebo effects has

long been recognized, and a prominent theory of the mech-

anism of the placebo effect is that it is driven by the expec-

tation of therapeutic benefit. Through prior experience with a

particular treatment, expectations are generated about the

resulting physical response to that treatment, in what Kirsch

has termed Bresponse expectancy^ [51], which is proposed

to be central in producing the physiological placebo effect.

In our previous work, we used a paradigm in which the pa-

tients expected apomorphine for three out of four scans; thus,

they knew that their chance of receiving active drug was 75%

for each scan. Although all patients in the study showed bio-

chemical placebo responses, only half of the patients reported

placebo-induced motor improvement. Those patients also

released larger amounts of dopamine in the dorsal striatum,

suggesting a relationship between the amount of dorsal

striatal dopamine release and perceived clinical benefit.

However, this relationship was not seen in the ventral stria-

tum, where all patients displayed increased dopamine release

regardless of whether they felt any improvement as a result of

placebo administration (Fig. 2) [52]. Compared to the dorsal

striatum, which is involved in voluntary movement, the ven-

tral striatum is classically associated with motivation [53,

54], goal-directed behavior [55], and reward anticipation

[56Y60]. The investigators concluded that the dopamine re-

leased in the ventral striatum was associated with the pa-

Fig. 1. [11C]raclopride PET scans of a patient with PD at
baseline and following injection of saline (placebo). Decreased
[11C]raclopride binding to D2 receptors in the striatum after
placebo in the After placebo image indicates tracer displace-
ment by placebo-induced endogenous dopamine release.
Reprinted from Mercado et al. (2006) [27] with permission.
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tients_ expectation of improvement in their symptoms, which

could in turn be considered a form of reward. Thus, dopamine

release in the ventral striatum can be seen as necessary but

not sufficient for the placebo effect to occur. This is in

keeping with other studies, in which ventral striatal dopamine

release is better correlated with Bdrug wanting^ than the

perceived subjective effects of the drug [38, 61]. In the

Strafella (2006) study, patients had a 50% expectation of

receiving real rTMS, and also demonstrated increased do-

pamine release in the ventral striatum. Thus, both studies

used a significant component of expectation in the paradigms

and a dopaminergic response was seen in the ventral striatum

that occurred independently of the benefit felt by the sub-

jects. Several other clinical studies have also demonstrated

the importance of expectation to the placebo effect in PD

[25, 28, 29, 49, 52, 62].

The Mesolimbic Dopamine System
and Reward Expectation

Among its diverse roles in the brain, dopamine is strongly

associated with reward processing. Dopamine neurons that

project to the ventral striatum increase phasic, burst firing in

response to natural (i.e., food, liquid, and sex) and drug re-

wards; intense, novel stimuli; and stimuli with rewarding or

attentional properties [63, 64]. They are also able to track

reward learning, such that once an animal has learned the

association between a reward-predicting stimulus and reward

delivery, the dopamine cell firing shifts to the stimulus (i.e.,

in anticipation of reward delivery), and if the reward is then

omitted, the dopamine neurons reduce firing at the time when

the reward should have occurred [64, 65]. Thus, dopamine

neurons fire in response to unexpected rewards but they do

not respond physically to predictable rewards, providing the

basis for the hypothesis that phasic dopamine signals occur

not in response to the reward itself, but instead to the reward

prediction error [58, 66, 67], which is the discrepancy be-

tween the predicted reward and the actual occurrence of the

reward. Dopamine neurons also demonstrate a more sus-

tained, tonic firing pattern during the reward expectation

period [57], the magnitude of which varies with the proba-

bility that the reward will occur: neuron activity is maximal

at p = 0.5 (when the uncertainty is the greatest), declines at

p = 0.25 and p = 0.75, and is virtually zero at both extremes

(i.e., p = 0 and 1) when the chance of reward is known with

certainty [57]. These results were mirrored in a recent study

in humans using fMRI; although dopamine neuron activity

could not be assessed directly, midbrain blood-oxygen-level-

dependent (BOLD) signals tracked the error prediction signal

transiently and demonstrated more sustained activity that

correlated with uncertainty [68]. Thus, through different pro-

files of neural activity, dopamine neurons have the capacity

to code the occurrence, prediction, expectation, and uncer-

tainty of reward-related stimuli as the organism learns to

optimize its goal-directed behavior.

Dopamine release in the ventral striatum is particularly

associated with reward prediction, and has been extensively

demonstrated in animals [69Y71]. The phasic firing of do-

pamine neurons occurs on the millisecond time scale, where-

as the tonic firing occurs over seconds, or perhaps minutes,

and so these properties of dopamine neurons are difficult to

demonstrate in humans using the slower time resolution of

most neuroimaging techniques. Despite these limitations, the

expectation of rewarding stimuli has been associated with an

increased BOLD signal in the ventral striatum as measured

by fMRI in several studies [68, 72Y76]. An fMRI study in

human cocaine addicts showed increased BOLD signals in

the nucleus accumbens during the preinfusion period for both

saline and cocaine, indicating that the nucleus accumbens

activity may reflect a computation of expectancy [72, 77]. A

recent 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-PET study

measured brain glucose metabolism during the expectation

of receiving methylphenidate in drug-naive subjects, and

reported that when subjects expected to receive methyl-

phenidate but received placebo, significant metabolic

increases were seen in the ventral cingulate gyrus and nu-

cleus accumbens, and the effect was largest in subjects who

had not yet experienced the active drug, suggesting the in-

volvement of these areas in processing expectation for what

the authors termed Buncertain drug effects^ [78]. This possi-

Fig. 2. Placebo-induced changes in [11C]raclopride (RAC)
binding potential (BP) in the ventral (nucleus accumbens, Acc)
and dorsal (caudate nucleus, Caud; putamen, Put) striatum of
six patients with PD. The changes represent the difference in
RAC BP between baseline (B) and post-placebo (P) values
(i.e., BYP). In the nucleus accumbens, there were no differ-
ences in placebo-induced RAC BP changes between patients
who perceived a clinical benefit after placebo injection (solid
bars, n = 3) and those who did not (open bars, n = 3) (p = 0.23).
In contrast, both in the caudate nucleus and in the putamen,
this biochemical placebo effect was greater in patients who
reported placebo-induced clinical benefit than in those
without (pG 0.05 for the caudate and pG0.01 for the putamen).
Reprinted from Berridge and Robinson (1998) [53] with
permission from Elsevier.
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bility is supported by a wealth of neuroimaging studies indi-

cating increased activity of the ventral striatum during the

expectation of other types of rewards, including monetary [68,

73, 74, 76, 79Y81], primary [82, 83], and drug rewards [77,

84]. Whether an increase in BOLD signal or glucose

metabolism in the ventral striatum indicates an increase in

dopamine release per se, or reflects an increase in gluta-

matergic transmission from cortical or limbic structures that

may be modulated by dopamine, is unknown.

However, there are PET studies that have shed some

light on the role of dopamine in reward processing. Reward-

related increases in dopamine release have been shown in

both the dorsal [35, 41, 46, 85, 86] and ventral [36, 38Y40,

42, 46, 47, 86, 87] striatum, although it remains unclear as

to what extent the functional roles within these structures

can be dissociated, particularly because the neural response

to reward varies with the experimental paradigm, type of

rewarding stimulus used, and personal experience of the

subject. That being said, ventral striatal dopamine release

has been demonstrated using [11C]-raclopride PET in re-

sponse to monetary rewards [46, 47], drugs of abuse [42, 86,

87], and psychostimulants [36, 38Y40], although the slow

time resolution makes it difficult to tease apart the dopamine

release related to the expectation of reward and to the reward

itself. Despite this, the expectation of caffeine in habitual

coffee drinkers was shown to increase dopamine release in

the thalamus as estimated by a change in [11C]-raclopride

binding [88], although the responses in the dorsal or ventral

striatum did not reach significance.

Imaging the Placebo Effect in Pain

Prominent placebo effects occur in many disorders other

than PD. Much of this research has occurred in the field of

pain, where the investigator can recruit healthy subjects and

induce various types of experimental pain. In fact, the first

neurochemical evidence for the mechanism of the placebo

effect was published in 1978, when it was shown that placebo

analgesia could be blocked by naloxone, indicating that it

was mediated by endogenous opioids [89]. Since then, sev-

eral studies have further implicated endogenous opioids in

the mechanism of placebo analgesia [90Y93]. Zubieta and

colleagues (2001) used displacement of the m-opioid recep-

tor antagonist PET tracer [11C] carfentanil to indirectly

demonstrate endogenous opioid release during a sustained

pain challenge in the anterior cingulate cortex (ACC),

prefrontal cortex (PFC), insula, amygdala, thalamus, and nu-

cleus accumbens [94]. In a later study [95], the same

investigators examined the neural networks underlying place-

bo analgesia by administering placebo with the expectation of

analgesia during the same pain challenge, and found endog-

enous opioid release in the rostral ACC, dorsolateral prefrontal

cortex (DLPFC), anterior insula, and the nucleus accumbens

(Fig. 3). In the high placebo responders, increased opioid

transmission in the nucleus accumbens was positively cor-

related with the subjective change in pain intensity ratings

and reductions in the negative affective ratings experienced

during the pain challenge. In the DLPFC, m-opioid system

activation was negatively correlated with the magnitude of

the expected analgesic effect of the placebo rated before

placebo administration, suggesting that a reduction in opioid

inhibitory control in this region has a permissive effect on the

engagement of other pain control regions, such as the insula,

ACC, thalamus, and/or midbrain [95]. These results substan-

tiate those of an fMRI study that separated the neural activa-

tions underlying pain anticipation and experience [96]. The

investigators used a well-established expectancy-manipulation

paradigm [97Y99] to enhance belief in the placebo by surrep-

titiously decreasing the level of thermal pain when a topical

placebo cream was applied on the forearm. Placebo treatment

substantially decreased the subjects_ reported pain and also the

pain-related activity in the insula, contralateral thalamus, and

ACC. During the expectation of analgesia, increased BOLD

signal was observed in the DLPFC, orbitofrontal cortex (OFC),

and ACC, as well as in the periaqueductal gray area (PAG) of

the brainstem, and the PAG increases were positively correlated

with DLPFC and OFC activation. Given that the PAG is an area

strongly linked to the descending control of pain and the

endogenous opioid system, these results suggest that opioid

systems are engaged by prefrontal cortically driven expectations

of analgesia [100]. These data echo results of a PET study

measuring regional cerebral blood flow (rCBF) during thermal

pain in which remifentanyl or placebo was given, and it was

shown that both interventions increased rCBF in the OFC and

Fig. 3. Effects of placebo (saline injection) on the activation
of m-opioid receptor-mediated neurotransmission as mea-
sured by [11C]carfentanil-PET in 20Y30-year-old, right-hand-
ed males (n = 14). Significant (p G0.0001) effects of placebo
on m-opioid system activity were detected in the left
dorsolateral prefrontal cortex (DLPFC), rostral ACC (RAC-
ing), left nucleus accumbens (Nacc), and right anterior insula
(Ins) (p G0.05) after correction for multiple comparisons. The
posterior right insula achieved subthreshold levels of signif-
icance (p G0.0001 uncorrected for multiple comparisons). Z
scores of statistical significance are represented by the
pseudocolor scale on the right and are superimposed over
an anatomically standardized MRI image in coronal views.
The left side of the axial and coronal images corresponds to
the right side of the body (contralateral to pain). Reprinted
from Zubieta et al. (2005) [95] with permission.
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ACC and that these increases covaried with rCBF increases in

the brainstem (PAG, pons, and medulla) [101]. Finally, a

recent study used an expectancy manipulation paradigm

similar to that reported by Wager et al. (2004) to investigate

the BOLD signal changes during heat pain before and after

placebo acupuncture [102], and observed significant differ-

ences in the anterior insula, lateral PFC, rostral ACC, and the

inferior parietal lobule. They also found a negative correlation

between the activity in the lateral/orbital PFC, rostral ACC,

cerebellum, pons, and right fusiform and parahippocampal

gyri, and the corresponding difference in subjective pain

ratings, indicating that the stronger the placebo analgesia (i.e.,

lower pain ratings), the greater the activity in these brain areas

[102]. That these results contrast those of Wager et al. (2004),

who found placebo-induced BOLD signal reductions in the

thalamus, insula, and ACC during pain, highlights the important

issue of the intrinsic variability of the placebo response; al-

though both studies used similar expectation-enhancement

procedures, they used different placebos (cream vs. acupunc-

ture), different methodologies, and the subjects were given

vastly differing instructions in different environments and

thus had different expectations. In light of these findings, it

reasonable to postulate that there is a spectrum of placebo

analgesic effects, the underlying mechanisms of which are

dictated by the environmental context and the experience of

the individual during the experiment. In the case of placebo

analgesia, these mechanisms can engage endogenous opioid

[29, 92, 95, 103] and nonopioid [90, 93, 104] systems in

varying degrees, depending on the experimental circumstances.

However, as described, certain prefrontal cortical structures are

involved consistently across placebo analgesia studies, includ-

ing the superior medial PFC; midrostral dorsal anterior cin-

gulate; and the dorsolateral, ventrolateral, and orbitofrontal

cortices. Interestingly, these areas are frequently implicated in

studies examining the voluntary regulation of affective

responses [100].

Imaging the Placebo Effect
in Depression

Clinical trials of antidepressants have shown particularly

strong placebo effects [105], which can in some cases be

indistinguishable from those of the active drug [106]. Indeed,

Kirsch and Sapierstein concluded from their meta-analysis

of 19 trials of antidepressants that about 75% of the effec-

tiveness of these drugs results from the placebo effect [107].

Detecting true placebo responses in depression is compli-

cated by the natural waxing and waning of symptoms in some

patients, the difficulties in measuring improvement using

rating scales, and the unavoidable confound of selecting

patients who have had multiple different treatments and thus

bring expectations and learning with them into the study

(e.g., they know that antidepressant medications require

more than three weeks to take therapeutic effect) [100].

Despite these and other variables, some studies have suc-

cessfully mapped out the placebo response in depressed

patients. Mayberg and colleagues (2002) conducted an FDG-

PET study that examined the brain regional glucose

metabolism in response to fluoxetine or placebo treatment

in a group of depressed men, where scans were acquired at

baseline, one and six weeks following treatment. The PET

data showed an overlap between the areas of metabolic

change in the fluoxetine and placebo groups at six weeks,

although the fluoxetine group had additional areas not seen in

the placebo group (Fig. 4) [106, 108]. This metabolic pattern

was completely different in patients who received cognitive

behavioral therapy, indicating that the physiological placebo

response closely matches the active drug response that it

is designed to simulate [100] (and also that cognitive be-

havioral therapy is not simply a placebo). As discussed, this

may also be the case in placebo analgesia [101] and in PD

[49]. However, Leuchter and colleagues (2002) used quan-

titative electroencephalography (EEG) to demonstrate that,

although depressed medication responders and placebo

responders were virtually indistinguishable clinically, the

placebo responders had changes in prefrontal cordance that

were not seen in medication responders or in nonresponders

Fig. 4. Changes in regional glucose metabolism as mea-
sured by FDG-PET in fluoxetine, placebo, and cognitive
behavioral therapy (CBT) responders measured before and
after a standard course of each respective treatment in
depressed patients. Increases are in red and decreases are
in blue. The fluoxetine and placebo groups were studied as
part of the same double-blind controlled experiment [104,
106]. A pattern of cortical increases (prefrontal, parietal, and
posterior cingulate cortices) and limbic-paralimbic
decreases (subgenual cingulate) is shared by both groups,
with the fluoxetine group showing additional changes in the
brainstem, hippocampus, insula, and caudate. In contrast,
the CBT response is associated with dorsolateral and medial
frontal decreases and hippocampal increases. Subgenual
cingulate BA 25 (ACing), posterior cingulate (PCing), pons
(P), hippocampus (Hc), PFC BA 9 (PFC), anterior insula (Ins),
caudate (Cau), orbital frontal cortex BA 11 (OFC), medial
frontal cortex BA 9 (MFC). Reprinted from Benedetti et al.
(2005) [100] with permission.
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(to either medication or placebo). This suggests that the

placebo response may depend on altered prefrontal activity

early in therapy and that the placebo response was not func-

tionally equivalent to the drug response [109]. Thus, it

remains unclear if placebo-derived improvements in de-

pression share a common mechanism with the therapeutic

effect of active treatment.

The effects of expectation of clinical improvement in

depression have also been examined. In the study by Mayberg

and colleagues (2002), at one week, before any clinical anti-

depressant effect was seen, both the fluoxetine and placebo

groups demonstrated ventral striatal and OFC glucose meta-

bolic changes (Fig. 5), which were not seen in those patients

who were ultimately drug nonresponders. Because none of

the patients in either group demonstrated any signs of clinical

improvement at this time, the investigators interpreted these

results as the expectation component of the subsequent anti-

depressant response [100]. These data are supported by a

recent EEG study conducted in depressed subjects which

demonstrated that a positive clinical outcome appeared to be

predicted in part by decreases in prefrontal EEG cordance that

occurred during the first week of the clinical trial during the

placebo lead-in phase, in the absence of drug (venlafaxine or

fluoxetine) treatment [110]. Although it is not possible to

identify the specific brain areas involved, the authors

suggested that early neurophysiological changes in prefrontal

brain areas represent nonspecific changes that occur in re-

sponse to the treatment environment, such as interactions

with study personnel, pill administration, and structured as-

sessments, shaping the expectations of the patient that have

the capacity to influence the treatment outcome [110]. Thus,

in depression, as well as in PD, expectation plays an important

role in the placebo response, and likely plays an important role

in active treatment as well.

Conclusion

It is clear that the mechanisms underlying placebo effects

are beginning to be unraveled owing to our ability to image

the human brain and quantify neurotransmission. Without

these techniques, the placebo effect would likely continue to

be considered a nuisance, obscuring the results of clinical

trials. The placebo effect should be seen within the context

of brain circuitry that enables semivoluntary control over

affective and physiological responses [100]. Based on the

evidence derived from PD, pain, and depression, it is clear

that there is not one placebo effect but many, with different

underlying mechanisms. However, they all have in common

a component of expectation, which may well involve the

DLPFC and dopaminergic activity in the ventral striatum.

This could be considered a Bpermissive^ component, inte-

grating motivational and reward-expectation circuitry en-

abling the belief that there will be improvement in one_s
symptoms [111]. This state of expectation, driven by pre-

frontal cortical and limbic areas, may in turn trigger a down-

stream biochemical response specific to the condition in

question; in the case of PD, dopamine release in the dorsal

striatum, and in placebo analgesia, endogenous opioid

release. The degree of overlap between the mechanisms of

placebo responses in different conditions is unknown, and it

is likely that the placebo responses in most conditions in-

volve the combined effects of many neurochemicals, in-

cluding monoamines, opioids, serotonin, and hormones;

however, it is not yet known with any certainty if this is the

case. It is interesting to note that in two of the studies men-

tioned here, the magnitude and location of the biochemical

placebo effect correlated with symptomatic improvement:

(1) the dopamine release in the putamen of the dorsal stria-

tum in the PD patients who perceived the most improvement

in their motor functions [49] and (2) the increased endo-

genous opioid release in the ACC, insula, and nucleus ac-

cumbens in subjects who experienced relatively less pain

by measures of intensity, unpleasantness, and affect [95].

This suggests that the placebo effect goes where it is most

needed, or serves a protective or adaptive function based on

the environmental context in which the subjects find them-

selves. This could explain the high variability of the placebo

response in that it is tailored to reflect the perceived needs

of the individual, which differ greatly among subjects.

Despite this heterogeneity, which can only be controlled

Fig. 5. Time course of regional metabolic changes in
fluoxetine nonresponders (left), fluoxetine responders (mid-
dle), and placebo responders (right). Ventral striatal and
orbital frontal increases are seen uniquely at one week (top
panel, middle and right images) of both active and sham
treatment in those patients that go on to show clinical
response at six weeks. Such changes are not seen in
patients who failed to respond (left image) and are no longer
present in either group of responders once clinical remission
has been achieved (six-week time point; bottom). In con-
trast, response-specific changes in PFC and subgenual
cingulate are seen only at six weeks (bottom) and not at
the one-week time point. Ventral striatum (VST), orbital
frontal cortex (OFC), medial frontal cortex (MFC), subgenual
cingulate BA 25 (ACing25), prefrontal cortex (PFC), anterior
insula (Ins), anterior cingulate BA 24 (ACing24). Reprinted
from Benedetti et al. (2005) [100] with permission.
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to some extent in clinical trials, it is remarkable that, based

on the evidence to date, the neurochemical placebo effect

appears to mirror the pharmacological effect which it is

designed to mimic [100], as seen in Mayberg et al. (2002),

Petrovic et al. (2002), and de la Fuente-Fernandez et al.

(2001). This indicates a crucial role for the context, partic-

ularly the expectations generated by the environment, in the

manifestation of placebo responses, whether it is a clinical

trial or an experiment designed to study the placebo effect

itself. As neuroimaging techniques continue to be refined and

improved, researchers will continue to gain further insights

into not only the mechanisms underlying the placebo effect,

but also the larger fundamental processes of how we integrate

environmental cues into the way we regulate our thoughts,

emotions, and physiological state for our behavior and

survival.
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